If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+32a-128=0
a = 1; b = 32; c = -128;
Δ = b2-4ac
Δ = 322-4·1·(-128)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{6}}{2*1}=\frac{-32-16\sqrt{6}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{6}}{2*1}=\frac{-32+16\sqrt{6}}{2} $
| 7y+15=10y | | 8m+1=5m+10 | | 2x-12=5x-10 | | 9x+18=4x-17 | | -2x-5=2x-2 | | x-3=2+1 | | 3(1+2)=-7+g | | a+8=$37.50 | | x+4x+1=54 | | 2x+3x=-14-3+2 | | -2(1-x)=x | | -4r-6+9r=-21 | | 4*(x+1)=2x-4 | | -5x=-3x+3 | | 5y+70=10y | | 10(s-4)=-139 | | 7(5b+8)=-17+9b | | x/2-3/2=5/3+x | | 5x/2=9.5 | | -3x+3=-2x+3 | | 7-12x=6-13x | | -27=-8+4(h+9) | | 8x-8=5x+17 | | 30-x=9 | | 5x+28=-14x-80 | | 4x÷10-7=-8 | | -4n-3+7=32 | | x-3/4=2x+x-3/2 | | 3t-7=46 | | 7x-13/20=3x-1/4-2x+1/5 | | -6v+2v=-24 | | (2x-7)/(4)=(x+3)/(3) |